Transformations of Functions

This section will cover how certain transformations affect functions, and their graphs.
The transformations we will be looking at all come under the heading of linear transformations.

These include vertical and horizontal shifts, reflections, as well as dilations, also called stretching and shrinking.

Vertical Shift

Suppose we have a function $y=f(x)$ and we want to know what happens when we add or subtract a positive constant C.

So we could have $y=f(x)+C$ or $y=f(x)-C$. It should be obvious looking at these equations that this transformation will move every point on the graph in the Y direction.

Assume for a now that $f(x)=\sqrt{x}$.

Each vertical line the three functions are each separated by 3 .
Adding a constant move the graph upward the amount C and subtracting a constant moves the graph down C. This type of transformation is the easiest to understand.

Horizontal Shift

The way horizontal shifts work might seem counter-intuitive at first. Let's look at $g(x)=f(x-C)=\sqrt{x-C}$

At first glance one might think that because we are subtracting C from x that it might move the graph to the left. Let's take a look at the graph.

Note that $g(x)$ is a transformation of $f(x)$ and it has moved to the right. If we were to instead add a constant to the x it would move to the left.

Consider just the point $(0, f(0))=(0,0)$. When we transform this function into $g(x)$, what value do we need to replace $x=0$ with so that the y coordinate is still $f(0)$?

$f(x)=\sqrt{x}$	$g(x)=f(x-2)=\sqrt{x-2}$
$f(0)=\sqrt{0}$	$g(0+2)=\sqrt{2-2}=\sqrt{0}$

So to get f and g to match in the Y direction, we have to add 2 to every x we give to g.
That is g is moved to the right a distance of 2 .
To summarize, the function $g(x)=f(x-v)+h$ is the function $f(x)$ shifted up h and to the right v.

Example:

Use the graph of $f(x)=x^{2}$ to graph the function $g(x)=(x+3)^{2}+4$

Reflections

A reflection is a transformation of each point to a destination on the opposite side of a line, which you can think of as the mirror.

If we take reflect the function $f(x)=x^{2}$ across the X axis, we get the following.

This is the function $g(x)=-f(x)=-x^{2}$

So the function $-f(x)$ is the reflection of the function $f(x)$ across the X-axis.

If we transform the function $f(x)=\sqrt{x}$ to $g(x)=f(-x)=\sqrt{-x}$ the transformation is a reflection across the Y-axis.

It is also possible to reflect a function $g(x)=-f(-x)$. This will reflect the graph in both the X and Y axis.

Let $f(x)=\sqrt{1-x^{3}}$ then the function $g(x)=-f(-x)=-\sqrt{1-x^{3}}$

While we will not be concerned with such reflections, it is possible to reflect a graph across an arbitrary line.

Dilations, Stretching and Shrinking

If one were to transform a function $f(x)$ into $g(x)=C f(x)$, this would multiply every y coordinate by C , either moving it closer to or away from the Y-axis.

Example:

The function graphed below is called the sine() function. We will see it later in the course. We let $f(x)=\sin (x)$ and transform it to $g(x)=2 f(x)=2 \sin (x)$

Notice how this stretches the function.
If instead $C<0$ then the graph would shrink in the Y direction.

Like a shift in the X direction, dilations in the X direction are also counter-intuitive.
Consider the sine function transformed $g(x)=f(2 x)=\sin (2 x)$.
You might guess that this transformation would stretch the function in the X direction, but instead it shrinks it.

Similarly if we transform a function $g(x)=f(C x)$ and $0<\mathrm{C}<1$ then the function will be stretched in the Y direction.

Even and Odd Functions

We are now going to define two important classes of functions, the even functions and the odd functions. These are functions that display a specific type of symmetry.

One way of understanding an even function, is that it is a function where a reflection across the Y axis does not change the function. We've seen this previously when we were looking at symmetry.

So for example, the function $f(x)=x^{2}$ is an even function because
$f(-x)=(-x)^{2}=(-1)^{2} x^{2}=x^{2}=f(x)$

Similarly, an odd function is a function that does not change when reflected over both the X and Y axes does not change. Examples are any functions $f(x)=x^{n}$ where n is odd.

In summary, an even function is one where $f(-x)=f(x)$
An odd function is one where $f(-x)=-f(x)$

Examples:

See whether the following functions are even, odd or neither.
$f(x)=x^{5}+x$
$g(x)=1-x^{4}$
$h(x)=2 x-x^{2}$

Some follow up questions.

1) Can a function be both even and odd?
2) Can a function have symmetry across the X-axis?
